\qquad
\qquad

FIRST SEMESTER M.Com. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2021

MCM 1C 03—QUANTITATIVE TECHNIQUES FOR BUSINESS DECISIONS
 (2019 Admission onwards)

\{Covid instructions are not applicable for Pvt/SDE students (November 2020 session)\}

General Instructions

1. In cases where choices are provided, students can attend all questions in each section.
2. The minimum number of questions to be attended from the Section / Part shall remain the same.
3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/ sub division may be ignored.
4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer any four questions.
Each question carries 2 weightage.

1. What is confidence interval?
2. Define Hypothesis.
3. What is non-parametric test?
4. What is partial Correlation?
5. What is point estimation?
6. Define Chi-square.
7. Briefly explain the uses of MS Excel in quantitative methods.

Part B

Answer any four questions.
Each question carries 3 weightage.
8. If the probability of defective bolts is 0.1 , find the mean and standard deviation for the distribution of defective bolts in a total of 500 .
9. On an average 1 house in 1,000 in a certain district has a fire during a year. If there are 2,000 houses in that district, what is the probability that exactly five houses will have a fire during the year?
10. A person throws 10 dice 500 times and obtains 2560 times 4,5 or 6 . Can this be attributed to fluctuations of sampling ?
11. Two samples of 100 electric bulbs each has a means 1500 and 1550 , standard deviations 50 and 60. Can it be concluded that two brands differ significantly at 1% level of significance in equality.
12. In a sample of 8 observations, the sum of squared deviations of items from the mean was 84.4 . In another sample of 10 observations, the value was found to be 102.6. Test whether the difference is significant at 5% level.

You are given that at 5% level of significance, critical value of F for $n=7$ and $v_{2}=9$ degrees of freedom is 3.29 and for $v_{1}=8$ and $v_{2}=10$ degrees of freedom, its value is 3.07 .
13. In an anti-malarial campaign in a certain area, quinine was administered to 812 persons out of a total population of 3248 . The number of fever cases is shown below :

Treatment		Fever	Nofever	Total
Quinine	\ldots	20	792	812
No quinine	\ldots	220	2216	2436
Total	\ldots	-	-	-
		-	-	-

Discuss the usefulness of quinine in checking malaria.
14. Given $\sum d x=0 ; \sum d x^{2}=776 ; \sum d y=0 ; \sum d y^{2}=550$; and $\sum d x d y=280 ; n=5$.

Calculate Karl Pearson's co-efficient of correlation.

Part C
 Answer any two questions.
 Each question carries 5 weightage.

15. The following data show the number of seeds germinating out of 5 lb damp filter for 80 sets of seeds. Fit a binomial distribution of this data and find the expected frequencies.

X	$:$	0	1	2	3	4	5
Y	$:$	6	20	28	12	8	6

16. The demand for a particular spare part in a factory was found to vary from day to day. In a sample study, the following information was obtained :

Days : Monday Tuesday Wednesday Thursday Friday Saturday

| No. Parts demanded | $:$ | 1.124 | 1.125 | 1.110 | 1.120 | 1.126 | 1.115 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Test the hypothesis that the number of parts demanded does not depend on the day of the week. (The table value of Chi-square for 5 d.f. and 5% level of significance is 11.07).
17. For 17 observations on price (x) and supply (y), the following data were obtained in appropriate units. $\sum x=544 ; \sum x^{2}=19040 ; \sum y=244 ; \sum y^{2}=3773 ; \sum x y=8413$, obtain the two regression lines. What is the supply when price is Rs. 35 ?
18. Explain the Properties of Normal Distribution.

